Calculations Showing the Influence of Aerodynamic Damping on Binary Wing Flutter

نویسنده

  • By N. C. LAMBOURNE
چکیده

The influence of damping is examined by comparing the flutter critical speeds and frequencies obtained using the complete equations of motion and those obtained when all the damping terms are omitted. The calculations are made for binary flexure-torsion flutter of a wing in incompressible flow and the comparisons extend over ranges of values of the principal parameters. When the ratio of air density to wing density is high, the damping terms are found to raise the flutter speed by a large amount. But when the ratio of air density to wing density is low, a condition often occurring in practice, it appears that, over a wide range of parameter variation, the flutter speed obtained in the absence of damping is reasonably close to that obtained from the complete equations. Further experience is obviously needed before any general conclusions can be re~¢hed, but the present results offer some hope of reducing either the extent of, or the accuracy needed in, the aerodynamic information used for wing flutter calculations. It is pointed out that with constant aerodynamic coefficients the flutter speed for an undamped system is independent of the wing density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Structural Damping • ~ - on Binary Flutter

The paper describes an investigation of the effect of structural damping in the torsion mode on wing flutter with the object of finding circumstances in which damping reduces the flutter speed. The drop in flutter speed can be considerable (25 per cent) and extend to very large values of structural damping. The effect is most apparent when the relative density (wing to air) is high, and when th...

متن کامل

Flutter Analysis of a Low Aspect Ratio Swept- Back Trapezoidal Wing at Low Subsonic Flow

A linear, aeroelastic analysis of a low aspect ratio swept back trapezoidal wing modeled as a cantilever plate is presented. An analytical and numerical formulation for both the aerodynamic forcing and structural response of the wing was developed. The analytical model uses a three dimensional time domain vortex lattice aerodynamic method. A Rayleigh-Ritz approach has been used to transfer equa...

متن کامل

Supersonic Wind - Tunnel Flutter Tests of Two Rectangular Wings

Two rectangular wings of aspect ratio 4 were flutter tested in a supersonic wind tunnel at Mach numbers 1·6 and 2·0 using a technique in which a structural stiffness was varied to give flutter at the Mach number. The results are in reasonable agreement with calculations using theoretical three-dimensional derivatives and arbitrary wing modes, though in general the calculated critical stiffnesse...

متن کامل

Evaluation of 2-D Aeroelastic Models Based on Indicial Aerodynamic Theory and Vortex Lattice Method in Flutter and Gust Response Determination

Two 2-D aeroelastic models are presented here to determine instability boundary (flutter speed) and gust response of a typical section airfoil with degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic models, two different aerodynamic theories including Indicial Aerodynamic Theory and Vortex Lattice Method (VLM) have been employed. Also, a 3-D aeroelastic framework ...

متن کامل

Flutter-Boundary Identification for Time-Domain Computational Aeroelasticity

Three time-domain damping/frequency/flutter identification techniques are discussed; namely, the moving-block approach, the least-squares curve-fitting method, and a system-identification technique using an autoregressive moving-average model of the aeroelastic system. These methods are evaluated for use with time-intensive computational aeroelastic simulations, represented by the aeroelastic t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1967